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Abstract 

By means  of  an example it is illustrated tha t  the usuaI canonical commuta t ion  relation is 
no t  equivalent to the  canonical commuta t ion  relation in the Weyl form. The  example is 
also used to show that  several well-known operator identities, in the  author ' s  opinion, 
are false because they were derived by formal power series expansions.  

The canonical commutation relation (CR) between position and momentum, 

IX, P] = i  (1.1) 

is of fundamental importance in quantum mechanics. One would like to have 
the result that CR (1.1) uniquely defines a pair of self-adjoint operators in a 
Hilbert space. However, CR (1.1) yields the usual Schr6dinger position and 
momentum operators, which are defined in the space L 2 ( - %  o~) of square- 
integrable functions on the real line, as its unique solution only if rather 
technical additional assumptions are made, which have no obvious physical 
significance. [See Chapter IV in Putman (1967) and references there as well 
as Jauch (1968).] 

On the other hand, the so-called Weyl form of CR(1), 

eiaPe ibX = e lab eibXe lap (_oo < a, b < oo) (1.2) 

has a unique irreducible self-adjoint solution (up to unitary equivalence), 
namely the SchrSdinger operators mentioned above (yon Neumann, 193 t). 
CR (1.2) can be proved from CR (1.1) by using a formal power series expan- 
sion. The inequivalence of CR (1.I) and CR (1.2) is due to the fact that formal 
power series in general do not lead to correct results if unbounded operators 

~ It can be shown that  two operators X and P satisfying CR(1) cannot  both  be 
bounded.  See Theorem 1.2.1 in Putnam (1967). 
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are involved. In this note, I would like to illustrate by means of a concrete 
example of a pair of self-adjoint operators satisfying CR (1.1) but not CR (1.2) 
that the uniqueness problem of the two relations (1.1) and (1.2) is quite differ- 
ent. The example will emerge by examining a well-known textbook formula in- 
volving the exponentiation of a self-adjoint operator. This formula, as well as 
similar ones, turns out to be wrong in general because it, as CR (1.2), is derived 
by formal power series expansion. The example also illuminates why formal 
power series expansions of functions of unbounded operators are unreliable. 

By formal power series expansion, one can derive the operator relation 

e i a e X e - i a P = X + i a / l ! [ P , X ]  +(ia)2/2![P, [P, X]] + . . .  (1.3) 

which is often quoted in textbooks either with the explicit comment that it 
is valid for any two operators X and P (Lurid, 1968) or at least without stating 
any restrictions on its validity (Messiah, 1966). We will now exhibit an 
important operator pair X, P which does not satisfy formula (1.3). To find 
it we note that formula (1.3) implies that X is unbounded i fX  and P satisfy 
CR (1.1). The reason is the following. For a solution of CR (1.1), formula (1.3) 
reduces to 

eia-r'X e -iae = X + a (1.4) 

Let us assume that X is bounded. Since, according to spectral theory (Yosida, 
1971), e lap for self-adjoint P and arbitrary real a is unitary and therefore also 
bounded, equation (1.4) must be a valid operator identity when a~plied to 
any vector ~ in the space. Thus, together with the unitarity of e iar, equation 
(1.4) implies 

(e-iae ~ ,  X e-iaP ~b) = (¢, X~b) + a(~b, ~b) (1.5) 

Thus, given an arbitrary state ~b, for which X has the expectation value (~, 
X¢),  we can always find another state, e-iaP¢, for which X has as large or as 
small an expectation value as we like. We just need to choose a appropriately. 
This is a contradiction, and therefore X must be unbounded. 

This result agrees with the familiar situation in which X and P are the 
usual Schr6dinger position and momentum operators, which are both 
unbounded. Indeed, equation (1.4) is valid in this case and can be derived 

- i a P  • easily from the fact that e is the translation operator in configuration 
space: e-laCe(x) = ¢ ( x  - a) . t  However, the result also suggests that in order 
to find an example for which equations (1.3) or (1.4) cannot be valid operator 
identities we should look for a solution to CR(1) with a bounded X. Such a 
solution is considered next. 

Let X and P be operators satisfying CR (1.1) in the Hilbert space L 2(c, d) 
of square.-integrable functions of the variable x in the finite interval [c, d].  
Both X and P are self-adjoint in this space i fX  is the multiplication by x, with 
domain equal to the entire space L 2 (c, d), and P is the differentiation operator 

~" A rigorous proof involving the Fourier transform is outlined in Section 4.2 in 
Putnam (1967). 
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- id /dx  with a domain consisting of the differentiabte functions which are 
periodic in [c, d], 'periodic' meaning here that f(c) = f(d).? The operator X 
is bounded below and above by c and d while P is unbounded, which is related 
to the fact that the domain of P is a genuine subset of the space. These opera- 
tors X and P therefore constitute an example for which equations (1.3) or 
(1.4) cannot be valid operator identities. The reader has probably already 
realized that this X and P and the space L2(c, d) are widely used in physics. 
If [c, d] is the interval [0, 2zr], then X is an angular variable and P is the 
corresponding angular momentum component. If the interval [c, d] is 'large', 
it constitutes the famous (one-dimensional, in this case) box in which we so 
often enclose systems. 

To demonstrate that in tact equations (1.3) or (1.4) are not valid operator 
identities, say for the X and P in L2(0, 2n), let us calculate the expectation 
value of both sides of equation (1.4) for an eigenstate fm= 1/(2rr)l/2eimX of 
P corresponding to the eigenvalue m. If equation (1.4) were an operator 
identity, it should clearly be applicable to fm since all operators in (1.4) are 
bounded. The expectation value of the left-hand side of equation (1.4) equals 

(fro, eiaP x e-iaPfm ) : (e-iaP fm , X e-iaPfm ) 

= (e -Jam fro , X e - iamfm ) 

= (fro, X f m )  (1 .6 )  

while that of the right-hand equals 

(fro, ( X  + a ) fm)  = (fro, Xfrn) + a (1 .7)  

Since expressions (1.6) and (1.7) are not equal, relations (1.3) or (1.4) are 
shown to be invalid for the present X and P. 

For the present X and P, relation (1.4) is valid when applied to any 
function ¢(x) whose support lies entirely within [0, 27r] as long as a is res- 
tricted so that translation by a does not carry the support of the considered 
function beyond 0 or 27r. This is so because for such a ¢(x), with a restricted 
as indicated, ¢(x) can be treated as an element of L2( - ~ ,  ~),  for which rela- 
tion (1.4) is valid as pointed out earlier. However, for the same reason, relation 
(1.4) is valid for the present X and P only on the null vector if a is not restricted 
in any way. The function fm in the calculation above has as its support the 
entire interval [0, 27r], and thus we expect the operator relation (t .4) not to 
be applicable to it for any a 4= O, a fact which isbom out by the calculation 
above. 

Using a formal power series expansion to establish equation (1.4) for a 
solution to CR (1 .I) does not even allow us to conclude as much about the 
domain of validity of relation (1.4) as is stated in the preceding paragraph. 
As pointed out in Kraus (1970), for the X and P of our example, CR (1.1) is 
valid only on the dense set of  functions which vanish at 0 and 21r. This comes 
about because the domain of P is restricted to the periodic functions and 

For a rigorous description of  the domain of  P see Section 2.11 in Putnam (1967). 
For a p roof  of  the self-adjointness o f  P see Section 49 in Akhiezer & Glazman (1961). 



296 H A N S  L A U E  

because Xff is periodic only if if(0) = ff(27r) = 0. t  Since expression (1.3) con- 
tains terms like [P, X] pn with arbitrary n, the nth derivative o f  ff should vanish 
at 0 and 27r for arbitrary n so that pn ~ is in the domain of  [P, X] .  Since ~(x) 
should also be analytic in [0, 27r] to make the series expansion of  eiaP~, 
which is used in the formal derivation of  equation (1.3) and which is actually 
just a Taylor expansion around the point x, meaningful, the requirement that 
all if(n)(0) = 0 implies that ~(x) --- 0 in [0, 2~r]. So the definition of  e -lap in 
terms of  a power series allows us to establish formula (1.4) for the present X 
and P only when it is applied to the null vector. All this goes to illustrate that 
trying to define an exponential of  an unbounded self-adjoint operator in 
terms of  a power series expansion is useful, at best, in special cases only and 
that manipulating such series formally to derive other operator identities can 
be expected to lead to results which are either wong or whose domain of  
validity is difficult to establish from the procedure used in their derivation. 

It may be worthwhile to indicate briefly, for the example of  the solution of  
CR (1.1) in L 2(0, 270 considered above, how spectral theory defines exponen- 
tials of  self-adjoint operators (Jordan, 1969; Yosida, 1971) and how, using 
this definition, we can evaluate the expectation value (fro, e iaeX e-iaPfm) 
considered earlier. If Pro is the projection operator onto the eigenfunction fm 
of  P belonging to the eigenvalue m, then P can be written 

P = E mPm (1.8) 
rn 

Any vector f i n  the Hilbert space L2(0,  27r) can be expanded as 

f= ~ (fm,f)fm (1.9) 
m 

Combining equations (1.8) and (1.9), we find the expression used in spectral 
theory to define Pf,~ 

Pf= 7L m(fm,f)fm (1.10) 
m 

Spectral theory then defines e- iaefvia 

e-iaPf = E e-Jam (fro, f)fm (1.11) 
m 

~- The differentiation operator -id/dx can, of course, also be defined on non-periodic 
functions; but such an extension of P would make P no longer self-adjoint. 

$ The definition (1.10) of Pf shows that the domain of P is exactly the set of periodic 
functions because tile series on the right converges only for those functions. As an example, 
consider f(x) = x. One look at the Fourier series for f(x) = x will show that the series 
(1.10) diverges even though f(x) is clearly a well-defined element of L2(0, 21r). This is so 
because -id/dx is an extension of P which is not self-adjoint; and the example illustrates 
that the unbounded self-adjoint operator P defined by equation (1.10) should not blindly 
be replaced by -M/dx and applied to non-periodic functions. 



ABOUT THE RELATION [X, P] = i 297 

The series (1.11) is convergent for all f E  L2(0, 2rr) and all a. Therefore, if 

Xfm = ~ bkfk, where bk = (fk, Xfm) (1.12) 
k 

we obtain 

= e -iam b ~ X e -iaPfm ~ kJ tc 
k 

and 
eiaPx e-iaPfm = ~ e- iambk eiakfk 

k 

Therefore the expectation vaiue mentioned above becomes 

( fm,  eiaP x e -iaP frn) = ~ e -ia(m - k ) b k ( f m , f k )  
k 

(1.13) 

(1.14) 

=bm 

= ( f m , X f m )  

which agrees with the result in equation (1.6). 
Another well-known formula involving exponentials, 

(1.15) 

e A+B = eAeBe-1/2[A~], where [.4, [A,B]] = [B, [A,B]] =0 (1.16) 

also is not valid for the operator pair X, P in L 2 [0, 2rr] considered above. As 
formula (4.t), formula (1 .t6) is derived by formal power series expansion or 
equivalent procedures. This formula, also, is often quoted either with the 
explicit comment that it is valid for any two operators A and B which commute 
with their commutator (Glauber, 1951 ; Gottfried, 1966) or, at least, without 
any other comment about restrictions on its validity (Messiah, 1966). 

Let us close now by considering Weyl's CR(2). It is a special case of formula 
raP tbX tbX taP (1.16). To see this, set A = iaP, B = ibX, and evaluate e' e" and e" e" 

using formula (1.16) and CR (1.1). To see explicitly that CR (1.2) is invalid 
for the operator pair X, P in L2(0, 2rr) considered above, calculate the expec- 
tation value for the two sides of CR (t.2) for the eigenstate fm of P. The two 
expectation values are not equal. 
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